Manual

F120-H830.10 S11W2V

Husillo de alta frecuencia

Cambio neumático del cono

Identificación del husillo de alta frecuencia

Puesto que nuestros husillos de alta frecuencia se desarrollan siempre con la tecnología más reciente, nos reservamos el derecho a introducir modificaciones o divergencias técnicas respecto a la variante descrita en el manual de instrucciones.

Los textos de este manual han sido redactados minuciosamente. Sin embargo, la empresa **Nakanishi Jaeger GmbH** no asume ninguna responsabilidad jurídica ni de otro tipo por los datos que eventualmente sean incorrectos y sus consecuencias.

La traducción o reproducción, incluso parcial, no está permitida sin autorización expresa por escrito de la empresa **Nakanishi Jaeger GmbH**.

Índice:

Traducción del manual de instrucciones original

1	Información previa	_ 5
1.1	Propósito de este manual	. 5
1.2	Explicación de los símbolos	. 5
2	Transporte y embalaje	6
2.1	Volumen de suministro del husillo de alta frecuen cia	
	2.1.1 Accesorios opcionales	. 6
	2.1.2 Documentación suministrada	. 6
2.2	Embalaje del husillo de alta frecuencia	. 7
3	Uso previsto	_7
3.1	Tipos de mecanizado permitidos	. 7
3.2	Materiales permitidos	. 7
4	Indicaciones de seguridad	_8
4.1	Trabajar de modo seguro	. 9
4.2	Detener el husillo de alta frecuencia	10
4.3	Instalación y mantenimiento	10
4.4	Modificación y reparación	10
4.5	Modos de funcionamiento no permitidos	
5	Descripción técnica	11
5.1	Conexiones del husillo de alta frecuencia	11
5.2	Conexión eléctrica	12
5.3	Refrigeración	12
5.4	Aire de sellado	13
5.5	Limpieza del cono	13
5.6	Cambio de herramienta neumático	13
6	Datos técnicos	14
6.1	Dimensiones	15
6.2	Hoja de datos técnicos (KL9111, Motor CA)	16
	6.2.1 Diagrama de rendimiento	17
6.3	Esquema de conexiones	18
6.4	Protección del motor Pt1000	21
6.5	Protección del motor PTC 130 °C	22
6.6	Supervisión del cono de la herramienta	22
6.7	Sensor de número de revoluciones y de posición (MiniCoder)	23
	6.7.1 Datos técnicos	23
6.8	Emisiones de ruido aéreo	24
7	Lugar de funcionamiento	24

8	Instalación	25
8.1	Instalar el husillo de alta frecuencia	. 25
8.2	Diámetro del tubo de alimentación del medio	. 26
8.3	Agua refrigerante	. 26
	8.3.1 Calidad del agua refrigerante	. 26
	8.3.2 Ajustar la refrigeración	. 26
8.4	Aire comprimido	. 27
	8.4.1 Clases de pureza de aire (ISO 8573 -1)	. 27
	8.4.2 Ajustar el aire de sellado	. 27
	8.4.3 Valor de ajuste	. 28
9	Puesta en funcionamiento	28
9.1	Esquema de rodaje	. 28
9.2	Arranque diario	. 29
9.3	Mensaje de parada	. 29
9.4	Puesta en funcionamiento tras almacenamiento.	. 29
10	Cambio de herramienta	30
10.1	Marcha a derecha y a izquierda	. 30
10.2	Cambio neumático del cono	. 31
	10.2.1 Tensor automático de herramienta HSK	. 31
10.3	Estación de cambio de herramienta (accesorios o cionales)	
	10.3.1 Cambio neumático del cono	. 32
	10.3.2 Instalar la estación de cambio	. 32
	10.3.3 Mantenimiento	. 32
10.4	Diagrama de flujo	. 33
	10.4.1 Diagrama de flujo neumático	. 33
	10.4.2 Diagrama de flujo eléctrico	. 34
	10.4.3 Señales	. 34
11	Herramientas para el mecanizado de alta velo dad	
12	Mantenimiento	36
12.1	Rodamientos de bolas	. 36
12.2	Limpieza diaria	. 36
	12.2.1 Antes de empezar a trabajar	. 36
	12.2.2 En cada cambio de herramienta	. 37
	12.2.3 En cada cambio del dispositivo de sujeción	
12.3	Almacenamiento	
12.4	Mantenimiento semanal	
	Mantenimiento mensual	38

Índice:

Traducción del manual de instrucciones original

15	Declaración de incorporación	43
14.2	Fallos de funcionamiento	40
14.1	Red de servicio posventa	39
14	Servicio posventa y reparaciones	39
13.1	Eliminación de desechos y protección del medio ambiente	39
13	Desmontaje	39
12.7	Tiempo máximo de almacenamiento	38
12.6	Almacenamiento prolongado	38

1 Información previa

El husillo de alta frecuencia es una valiosa herramienta de precisión para el mecanizado de alta velocidad.

1.1 Propósito de este manual

El presente manual es un componente importante del husillo de alta frecuencia.

- Conservar este manual con cuidado.
- Poner el manual de instrucciones a disposición de todo el personal encargado del husillo de alta frecuencia.
- Leer toda la documentación suministrada.
- ⇒ Antes de ejecutar un trabajo, leer detenidamente el capítulo correspondiente a dicho trabajo en el manual de instrucciones.

1.2 Explicación de los símbolos

Para poder asignar la información rápidamente, en este manual se utilizan símbolos y marcas de texto como ayuda visual.

Las indicaciones se caracterizan por una palabra clave y un marco de color:

PELIGRO

¡Situación peligrosa!

Causa lesiones graves o incluso la muerte.

► Medida para evitar el peligro.

ADVERTENCIA

¡Situación peligrosa!

Puede causar lesiones graves o incluso la muerte.

► Medida para evitar el peligro.

ATENCIÓN

¡Situación peligrosa!

Puede causar lesiones leves o medias.

Medida para evitar el peligro.

Aviso

Puede causar daños materiales. Este símbolo no advierte de daños personales

Consejo

Un consejo indica información útil para el usuario.

2 Transporte y embalaje

Evitar sacudidas y golpes fuertes durante el transporte, puesto que pueden dañar los cojinetes del husillo de alta frecuencia.

- Cualquier daño reduce la precisión del husillo de alta frecuencia.
- Cualquier daño limita la vida útil del husillo de alta frecuencia.
- Cualquier daño reduce la vida útil del husillo de alta frecuencia.

2.1 Volumen de suministro del husillo de alta frecuencia

El volumen de suministro del husillo de alta frecuencia incluye los siguientes componentes:

- ☐ Husillo de alta frecuencia
- Cono de limpieza de fieltro
- ☐ Embalaje de transporte
- ⇒ En el momento de su recepción, compruebe que la entrega del husillo de alta frecuencia esté completa.

2.1.1 Accesorios opcionales

Disponible previa demanda:

- ☐ Soporte de husillo
- ☐ Convertidor de frecuencia
- Refrigerador
- Grasa para pinzas
- Otros accesorios previa demanda.

Únicamente los accesorios autorizados han sido probados en cuanto a seguridad operacional y funcionamiento.

- ➡ El uso de otros accesorios puede provocar la pérdida de todo derecho a indemnización y garantía.
- Si el soporte de husillo es fabricado por el cliente, contactar obligatoriamente con la empresa Nakanishi Jaeger GmbH antes de iniciar la fabricación para solicitar el esquema de tolerancia y fabricación para el soporte de husillo.

2.1.2 Documentación suministrada

Los siguientes documentos se incluyen en el volumen de suministro del husillo de alta frecuencia:

- Manual de instrucciones
- ☐ La declaración de incorporación forma parte del manual de instrucciones.
- ☐ Protocolo de ensayo
- ➡ En el momento de la entrega comprobar que la documentación suministrada está completa. Si es necesario, solicitar una nueva copia.

2.2 Embalaje del husillo de alta frecuencia

Todos los materiales del embalaje de transporte pueden ser reciclados en una instalación de eliminación de residuos.

3 Uso previsto

Conforme a la Directiva de Máquinas, el husillo de alta frecuencia es una «máquina incompleta» y no puede cumplir ninguna función por sí mismo. El husillo de alta frecuencia solo puede hacerse funcionar junto con una máquina herramienta y un convertidor de frecuencia.

3.1 Tipos de mecanizado permitidos

	El husillo de alta frecuencia ha sido desarrollado únicamente para los siguientes tipos de mecanizado.
	☐ Fresado
	☐ Taladrado
	☐ Grabado
	☐ Rectificado
	Si se requieren otros tipos de mecanizado, contactar con la empresa Nakanishi Jaeger GmbH.
3.2	Materiales permitidos
	El husillo de alta frecuencia ha sido desarrollado para los siguientes materia- les.
	Metales (aleaciones, fundición, etc.)
	☐ Materiales sinterizados
	□ Plásticos
	☐ Madera
	☐ Grafito
	☐ Piedra (mármol, etc.)
	Papel y cartón
	☐ Placas de circuito impreso
	☐ Vidrio y cerámica
	Si se requieren otros materiales, contactar con la empresa Nakanishi Jaeger GmbH.

4 Indicaciones de seguridad

El husillo de alta frecuencia ha sido construido conforme a las normas técnicas generalmente reconocidas y es seguro para el funcionamiento.

Sin embargo, el husillo de alta frecuencia puede conllevar riesgos cuando:

- ☐ El montaje lo realiza personal no cualificado.
- ☐ Se utiliza de modo inapropiado.
- ☐ Se utiliza para un uso no conforme a lo previsto.

El montaje, puesta en funcionamiento y mantenimiento del husillo de alta frecuencia deben ser realizados únicamente por personal especializado.

Definición: Se considera personal especializado a aquellas personas familiarizadas con la instalación, montaje, puesta en funcionamiento y operación del producto que disponen de las cualificaciones necesarias para desarrollar su actividad. La responsabilidad, formación y supervisión del personal deben estar reguladas con precisión por la empresa explotadora.

PELIGRO: A causa de explosión.

Los husillos de alta frecuencia no están autorizados para el uso en espacios con riesgo de explosión. El uso en tales espacios puede provocar explosiones.

No utilizar el husillo de alta frecuencia en entornos potencialmente explosivos.

PELIGRO: A causa de piezas proyectadas.

El husillo de alta frecuencia funciona con un elevado número de revoluciones y por ello puede ser proyectado.

Utilizar el husillo de alta frecuencia únicamente cuando esté montado de forma fija en la máquina o instalación.

Aviso: Respetar los valores límite.

Observar los valores límite especificados en los datos técnicos.

Aviso: Tener en consideración la máquina.

- ▶ Observar el manual de instrucciones de la máquina en la que se ha montado el husillo de alta frecuencia.
- ► Tener en cuenta todas las indicaciones de seguridad del fabricante de las máquinas.
- Asegurarse de que la máquina no conlleve riesgos (p. ej. movimientos incontrolados). Solo después se debe instalar el husillo de alta frecuencia en la máquina.

Aviso: No dañar el husillo de alta frecuencia.

- ► Cualquier daño reduce la precisión del husillo de alta frecuencia.
- Cualquier daño limita la vida útil del husillo de alta frecuencia.
- Cualquier daño reduce la vida útil del husillo de alta frecuencia.

4.1 Trabajar de modo seguro

Observar todas las indicaciones de seguridad que figuran en el manual de instrucciones, las normas nacionales vigentes sobre prevención de accidentes, así como los reglamentos internos laborales, de explotación y de seguridad de la empresa.

PELIGRO: A causa de piezas proyectadas.

Si una herramienta no está sujeta correctamente será proyectada por la fuerza centrífuga generada durante el mecanizado.

- ▶ Utilizar completamente la profundidad del sistema de fijación.
- Sujetar la herramienta con fijación rígida.

PELIGRO: A causa de piezas proyectadas.

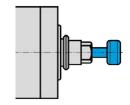
En caso de sentido de giro incorrecto el sistema de sujeción se afloja y la herramienta sale proyectada.

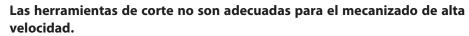
Respetar obligatoriamente el sentido de giro del husillo de alta frecuencia

ADVERTENCIA: Peligro de lesiones a causa de piezas proyectadas.

El husillo de alta frecuencia funciona a elevados números de revoluciones que provocan la proyección de virutas con elevada energía cinética.

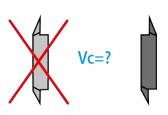
- ► En ningún caso deben retirarse los dispositivos de seguridad de la máquina o instalación.
- Trabajar siempre con gafas de protección.



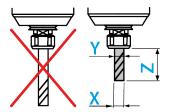

Figura de ejemplo: colocar el vástago

Aviso: Garantizar el funcionamiento.

No hacer funcionar nunca el husillo de alta frecuencia sin un vástago de herramienta fijado.


Si el vástago de herramienta no está fijado:

- ☐ El sistema de fijación se daña a causa de la fuerza centrífuga.
- ☐ El sistema de fijación se desajusta.
- ☐ Se influye en la calidad de equilibrado del husillo de alta frecuencia.
- Se daña el rodamiento.
- Tomar las medidas de protección contra salpicaduras adecuadas en función del tipo de mecanizado, el material que se debe mecanizar y la herramienta elegida.
 - Observar el manual de instrucciones de la máquina en la que se ha montado el husillo de alta frecuencia.
- Preguntar al proveedor de las herramientas las velocidades periféricas máximas de las herramientas utilizadas.


Si son necesarias por motivos de producción:

- Utilizar únicamente herramientas equilibradas.
 - **DIN ISO 1940**
 - Nivel de calidad 2,5

Indicaciones de seguridad

El diámetro de cuchilla de la herramienta (X) no debe ser mayor que el margen de sujeción máximo (Y).

- Sujetar la herramienta siempre con la menor distancia posible.
- Mantener baja la medida (Z).
 - (Y) Ver el capítulo: Datos técnicos [▶ 14].

4.2 Detener el husillo de alta frecuencia

Para poner fuera de servicio el husillo de alta frecuencia para trabajos de instalación y mantenimiento proceder de la siguiente manera:

- Desconectar la alimentación de energía (corriente) por completo.
- Desconectar la alimentación de medios (aire y líquido) por completo.
- Asegurarse de que el eje del husillo de alta frecuencia está detenido por completo.

Si el husillo se ha detenido para limpiarlo:

⇒ Volver a conectar solo el aire de sellado y de limpieza de cono.

Consejo: Transmitir los datos al control.

▶ Utilizar en el convertidor de frecuencia la opción de detectar el mensaje de parada del eje y enviarlo al control de la máquina para su evaluación.

4.3 Instalación y mantenimiento

- Llevar a cabo los trabajos de instalación, limpieza y mantenimiento solo después de detener el husillo de alta frecuencia y de que se haya detenido el eje.
- Instalar todos los dispositivos de seguridad y protección de la máquina inmediatamente después de concluir los trabajos.

4.4 Modificación y reparación

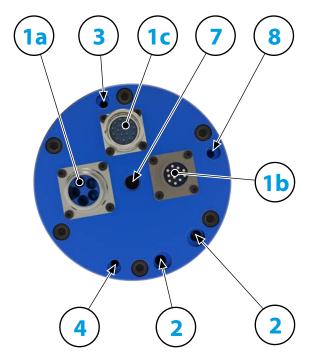
Las modificaciones o cambios de los husillos de alta frecuencia solo están permitidas tras acordarlo previamente con la empresa Nakanishi Jaeger GmbH.

Solo los socios de servicio técnico que figuran en el capítulo «Servicio posventa y reparaciones [> 39]» pueden abrir y reparar el husillo de alta frecuencia.

Únicamente los accesorios autorizados han sido probados en cuanto a seguridad operacional y funcionamiento.

4.5 Modos de funcionamiento no permitidos

El husillo de alta frecuencia solo es seguro para el funcionamiento cuando se utiliza conforme a lo previsto.


Observar las indicaciones de seguridad de todos los capítulos del manual de instrucciones, en caso contrario pueden provocarse riesgos para el personal, el medio ambiente, la máquina o el husillo de alta frecuencia.

La inobservancia de las indicaciones de seguridad puede conllevar la pérdida de todo derecho a indemnización y garantía.

5 Descripción técnica

5.1 Conexiones del husillo de alta frecuencia

1a	Conexión eléctrica para: Fases del motor	
1b	Conexión eléctrica para: Supervisión del cono de la herramienta, PTC, Pt1000	
1c	Conexión eléctrica para: Control vectorial	
2	Agua refrigerante	G 1/4"
3	Aire de sellado	G 1/8"
4	Limpieza del cono	G 1/8"
7	Neumática para cambio de herramienta (cilindro adelante)	G 1/8"
8	Neumática para cambio de herramienta (cilindro retraído)	G 1/8"

5.2 Conexión eléctrica

El husillo de alta frecuencia solo debe hacerse funcionar con un convertidor de frecuencia (CF).

- → Comprobar si los datos de corriente, tensión y frecuencia del husillo de alta frecuencia coinciden con los datos de salida del CF.
- Utilizar un cable de alimentación del motor lo más corto posible.
- Ajustar el número de revoluciones del husillo de alta frecuencia con ayuda del CF.
- ⇒ Hallará más información en el manual de instrucciones del CF.

El CF detecta, según la variante, los siguientes estados de funcionamiento del husillo de alta frecuencia:

- ☐ El husillo de alta frecuencia gira.
- ☐ El husillo de alta frecuencia está demasiado caliente.
- ☐ El husillo de alta frecuencia está detenido, etc.

El CF transmite los estados de funcionamiento del husillo de alta frecuencia al control de la máquina.

5.3 Refrigeración

La refrigeración por líquido mantiene el husillo de alta frecuencia a temperatura constante durante el funcionamiento.

Aviso: Prolongación de la vida útil mediante disipación de calor.

Durante el funcionamiento del husillo de alta frecuencia se genera calor. La temperatura del husillo de alta frecuencia no debe exceder + 45° C, de lo contrario se reduce la vida útil de los cojinetes.

Comprobar la temperatura del husillo de alta frecuencia en la carcasa.

5.4

Para la especificación de la calidad del aire véase el capítulo «Clases de pureza de aire (ISO 8573 -1) [▶ 27]».

Aire de sellado

El aire de sellado evita que puedan penetrar objetos extraños como virutas y líquidos (p. ej. emulsiones) en el husillo de alta frecuencia.

Comprobar que entre la carcasa y las piezas giratorias del husillo de alta frecuencia salga aire.

5.5

Para la especificación de la calidad del aire véase el capítulo «Clases de pureza de aire (ISO 8573 -1) [▶ 27]».

Limpieza del cono

La limpieza del cono evita que penetren virutas y líquidos en el eje durante el cambio de herramienta y ensucien y dañen el sistema de sujeción.

5.6

Para la especificación de la calidad del aire véase el capítulo «Clases de pureza de aire (ISO 8573 -1) [▶ 27]».

Cambio de herramienta neumático

El cambio de herramienta o del cono para herramienta se realiza de forma neumática.

En el interior del husillo de alta frecuencia se acciona una mecánica que tensa, destensa o expulsa el cono para herramienta o la pinza portapieza.

6 Datos técnicos

Rodamientos

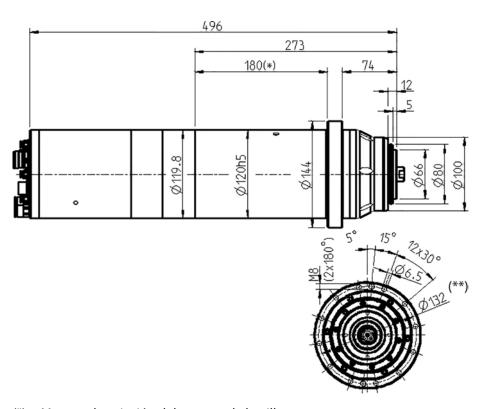
Rodamiento híbrido de bolas (unidad)	4
Engrase de por vida	Libre de mantenimiento

Valores de rendimiento Refrigeración por líquido

	Pmáx./5s	S6-60%	S1-100%	
Potencia nominal	24	19	12	[kW]
Par de giro	21,14	14,56	12,06	[Nm]
Voltaje	380	380	380	[V]
Amperaje	60	45,3	40,4	[A]

Datos del motor

Tecnología de motores	Accionamiento asincrónico trifásico (sin escobillas y sin sensor)
Frecuencia	1.000 HZ
Número de polos (par)	2
N.º de revoluciones nominal	30.000 rpm
Valor de aceleración/frenado Por segundo	10 000 rpm (otros valores bajo consulta)


Características

Transmisor de revoluciones	Control vectorial
Rueda dentada de medición	Dientes = 256
nueua dentada de medición	Módulo = 0,3
Protección del motor	PTC 130° C PT1000
Carcasa	Acero inoxidable
Diámetro de la carcasa	120 mm
Diámetro de la brida	144 mm
Círculo de referencia	Ø 132 mm (12 x Ø 6,5) para tornillos: M6
Refrigeración	Refrigeración por líquido
Temperatura ambiente de funciona- miento	+ 10° C + 45° C
Aire de bloqueo	
Tipo de protección	IP54
(aire de bloqueo conectado)	1754
Limpieza del cono	
Cambio de herramienta	Cambio neumático del cono
Asiento de herramienta	HSK-E 50
Supervisión del cono de la herramienta	Inductivo

3 posiciones	Tensado, distendido, expulsado
Margen de sujeción hasta	20 mm
Marcha a derecha y a izquierda	
	5 polos (ECTA 133)
Conector	(Fases del motor)
Conector	12 polos (ECTA 133)+ 17 polos
	(Sensores)
Peso	~ 27 kg
Marcha concéntrica cono interior	< 1 μ
Juego axial	< 1 μ

6.1 Dimensiones

- (*) = Margen de sujeción del soporte de husillo
- (**) = Margen de sujeción de brida

6.2

Los rendimientos (S1, S6 y S2) son válidos para corrientes sinusoidales y tensiones sinusoidales.

Los valores de rendimiento de los husillos de alta frecuencia dependen del CF utilizado y pueden diferir de los valores especificados.

Valores medidos: S1-100 %

Valores medidos: S6-60%

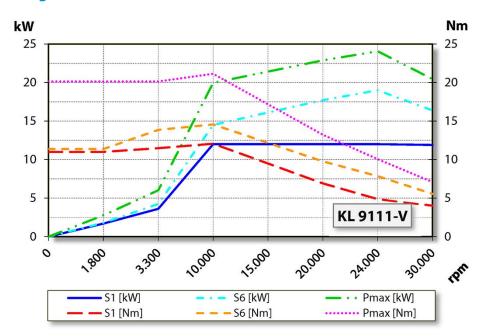
Hoja de datos técnicos (KL9111, Motor CA)

Tipo de motor	ACM 90/62/130-4E
Potencia de salida	12 kW
Número de revoluciones nominal	30.000 rpm
Refrigeración	Refrigeración por líquido
Protección del motor	PTC 130° C Pt1000

Número de revoluciones nominal	1800	3300	10000	24000	30000	rpm
N.º de revoluciones	1473	3000	9521	23597	29363	rpm
Frecuencia	60	110	333	800	1000	Hz
Potencia de salida	1,7	3,6	12	12	11,9	kW
Par de giro	11	11,485	12,06	4,86	4,02	Nm
Voltaje	65	110	255	380	380	V
Amperaje	37,5	39,9	40,4	25,6	25,2	Α

Número de revoluciones nominal	1800	3300	10000	24000	30000	rpm
N.º de revoluciones	1513	2915	9514	23121	28927	rpm
Frecuencia	60	110	333	800	1000	Hz
Potencia de salida	1,8	4,23	14,5	19	16,4	kW
Par de giro	11,37	13,86	14,56	7,85	5,55	Nm
Voltaje	70	115	280	380	380	V
Amperaje	42,9	45,3	45,3	42,7	36	Α

Valores medidos: S2-Pmáx./

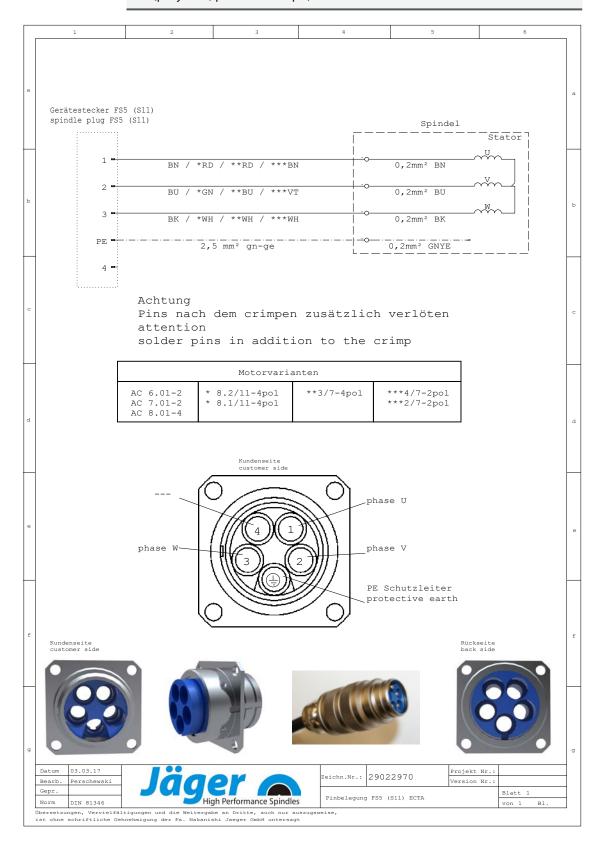

Número de revoluciones nominal	1800	3300	10000	24000	30000	rpm
N.º de revoluciones	1313	2857	9468	22816	28521	rpm
Frecuencia	60	110	333	800	1000	Hz
Potencia de salida	2,77	6,02	19,96	24,06	20,45	kW
Par de giro	20,14	20,14	21,14	10,07	7,09	Nm
Voltaje	75	120	295	380	380	V
Amperaje	60	58,8	59,6	60	50	А

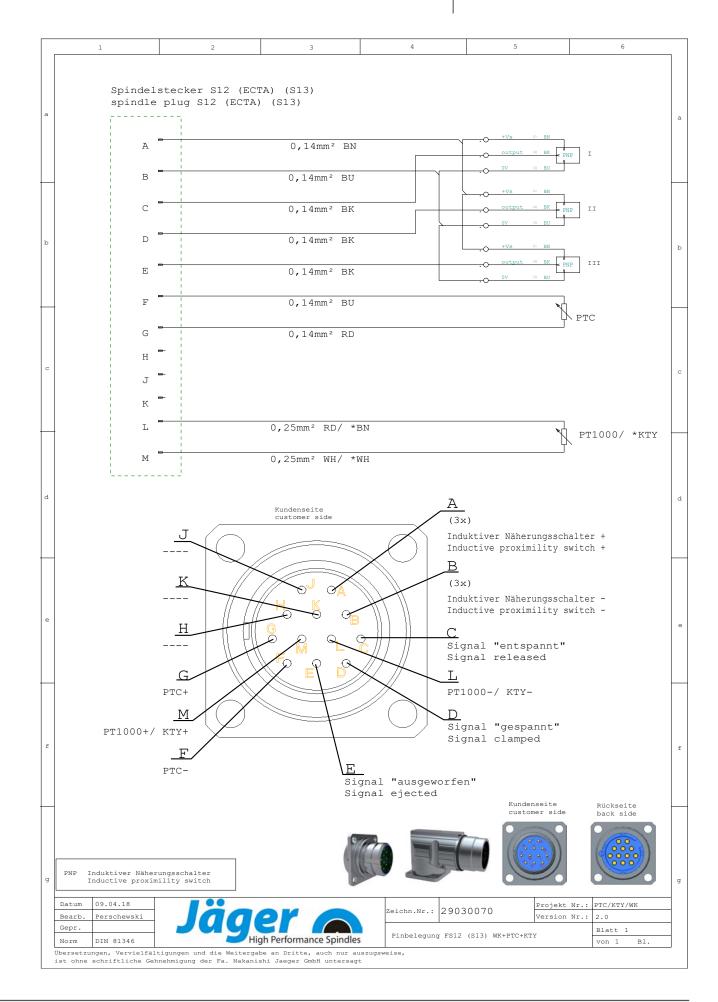
Observación sobre el funcionamiento en convertidores de frecuencia estáticos.

En funcionamiento con convertidor de frecuencia la tensión efectiva de onda directa debe corresponderse con la tensión de motor especificada.

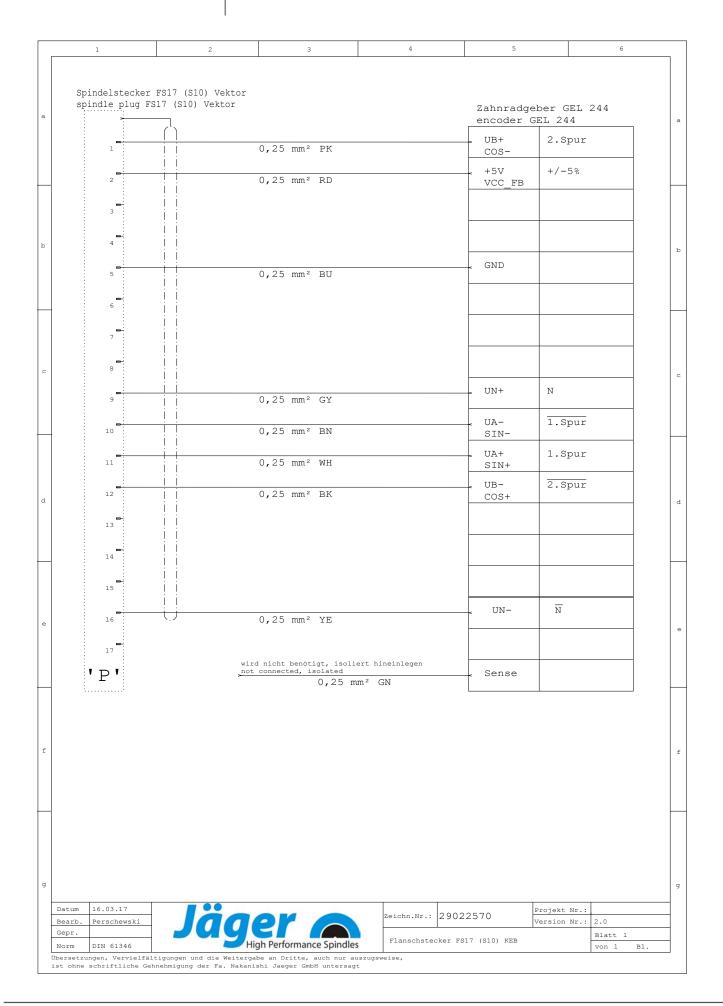
A causa de la proporción de ondas armónicas las corrientes medidas pueden ser mayores que los valores especificados.

6.2.1 Diagrama de rendimiento




6.3 Esquema de conexiones

Aviso: No modificar la asignación de fábrica.


Toda modificación puede causar sobretensiones en los componentes eléctricos (p. ej. PTC, placa de campo).

Datos técnicos

1800 1600 1600 1200 1200 Temperatura t/°C

Protección del motor Pt1000

Sensor de temperatura de platino

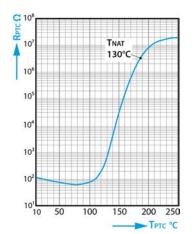
Ejecución conforme a:

- ☐ DIN EN 60751
- ☐ Clase de precisión B

Datos técnicos

Relación temperatura/resistencia (serie de valores básicos)

t ₉₀ /°C			(*)	Resisten	cia con te	emperat	ura t ₉₀ /°C	[Ω]		
	0	1	2	3	4	5	6	7	8	9
0	1000	1004	1008	1012	1016	1020	1023	1027	1031	1035
10	1039	1043	1047	1051	1055	1059	1062	1066	1070	1074
20	1078	1082	1086	1090	1094	1097	1101	1105	1109	1113
30	1117	1121	1125	1128	1132	1136	1140	1144	1148	1152
40	1155	1159	1163	1167	1171	1175	1179	1182	1186	1190
50	1194	1198	1202	1206	1209	1213	1217	1221	1225	1229
60	1232	1236	1240	1244	1248	1252	1255	1259	1263	1267
70	1271	1275	1278	1282	1286	1290	1294	1298	1301	1305
80	1309	1313	1317	1320	1324	1328	1332	1336	1340	1343
90	1347	1351	1355	1359	1362	1366	1370	1374	1378	1381
100	1385	1389	1393	1396	1400	1404	1408	1412	1415	1419
110	1423	1427	1431	1434	1438	1442	1446	1449	1453	1457
120	1461	1464	1468	1472	1476	1480	1483	1487	1491	1495
130	1498	1502	1506	1510	1513	1517	1521	1525	1528	1532
140	1536	1540	1543	1547	1551	1555	1558	1562	1566	1570
150	1573	1577	1581	1585	1588	1592	1596	1599	1603	1607
160	1611	1614	1618	1622	1625	1629	1633	1637	1640	1644
170	1648	1651	1655	1659	1663	1666	1670	1674	1677	1681
180	1685	1689	1692	1696	1700	1703	1707	1711	1714	1718


(*) Valores redondeados

6.5 Protección del motor PTC 130 °C

Posistor con aislamiento protector

Curvas características de las temperaturas nominales de reacción de 90 °C a 160 °C conforme a DIN VDE V 0898-1-401.

Resistencia de posistor R_{PTC} en función de la temperatura de posistor T_{PTC} (valores de resistencia de señal débil).

Datos técnicos

Tipo		M135	
Tensión de funcionamiento máx.	$(T_A = 0 40^{\circ} C)$	V _{máx} .	30 V
Tensión de medición máx.	$(T_A - 25 \text{ K}T_{NAT} + 15 \text{ K})$	V _{Mes, máx}	7,5 V
Resistencia nominal	$(V_{PTC} \le 2.5 \text{ V})$	RN	≤ 250 Ω
Tensión de ensayo de aislamiento		V_{is}	3 kV~
Tiempo de reacción		t _a	< 2,5 s
Margen de temperatura de funcio- namiento	(V=0)	T_{op}	-25/+180° C

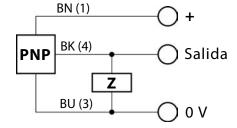
Valores de resistencia

$T_{NAT} \pm \Delta T$	R ($T_{NAT} - \Delta T$) ($V_{PTC} \le 2.5 \text{ V}$)	R ($T_{NAT} + \Delta T$) ($V_{PTC} \le 2,5 \text{ V}$)	R $(T_{NAT} + 15 \text{ K})$ $(V_{PTC} \le 7.5 \text{ V})$	R $(T_{NAT} + 23 \text{ K})$ $(V_{PTC} \le 2,5 \text{ V})$
130 ±5 °C	≤ 550 Ω	≥ 1330 Ω	$\geq 4 \text{ k}\Omega$	

6.6 Supervisión del cono de la herramienta

La supervisión del cono de la herramienta (supervisión WK) indica al usuario el estado de disponibilidad del husillo de alta frecuencia y transmite la señal correspondiente al control de la máquina.

☐ Supervisión del cono de la herramienta mediante interruptor de proximidad inductivo.


Señales

Herramienta tensada	Herramienta destensada	Herramienta expulsada
Husillo de alta frecuencia	Husillo de alta frecuencia	Husillo de alta frecuencia
—	1	4
listo para el funcionamiento	no listo para el funcionamiento	no listo para el funcionamiento

Margen de tensión de funcionamiento: 10 - 30 VDC (UL – clase 2)

Distancia de conmutación: Sn 2,0 mm

Protección frente a cortocircuito e inversión de la polaridad.

BN = marrón

BK = negro

BU = azul

NO = normalmente abierto

Figura de ejemplo: rueda dentada de medición

Sensor de número de revoluciones y de posición (MiniCoder)

El MiniCoder palpa una medida materializada (rueda dentada de medición) de material ferromagnético. El campo magnético del sensor integrado se modula a través de la medida materializada en movimiento.

☐ La modificación del campo magnético es detectada por el sensor y convertida en una señal de salida sinusoidal.

6.7.1 Datos técnicos

Nivel de salida	$1V_{ss}$ como señal diferencial
C-2-1 d1:d-	2 señales sinusoidales desplazadas 90° y sus señales inversas;
Señal de salida	resistente a cortocircuitos;
	Opción: impulso de referencia
Frecuencia de salida	0200 kHz
r recuericia de salida	con una capacidad de conducción de 5 nF
Offset (estático)	±20 mV
Tolerancia de amplitud	-20 % +10 %
Sincronización de amplitue	des USp1/USp2 0,91,1
Tensión de alimentación U	$^{\prime}$ JB $^{\prime}$ 5 V_{DC} ±5 %
Consumo de potencia sin o	carga ≤ 0,3 W
	máximo 100 m
Longitud de cable	(tener en cuenta la caída de tensión a través del cable de alimentación)
	Cable de 9 hilos, sección de hilos: 0,15 mm²
	Diámetro exterior: 5 - 0,3 mm,
Conexión	Radio de flexión mín.: 25 mm
	Cable apantallado adicional conducido hacia fuera para una puesta a tierra cercana al sensor

ATENCIÓN: El ruido afecta a la salud.

► Hacer funcionar el husillo de alta frecuencia solo con protección auditiva.

Lugar de funcionamiento

Antes de la instalación del husillo de alta frecuencia deben tenerse en cuenta los puntos siguientes:

Margen de sujeción del soporte de husillo

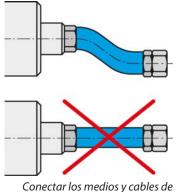
→ Debe asegurarse que en la máquina se ha montado el soporte de husillo adecuado para el husillo de alta frecuencia.

Margen de sujeción de brida:

- → Debe asegurarse que el patrón de taladros del husillo de alta frecuencia encaja con el de la superficie de fijación de la máquina.
 - Comprobar el número y la medida de los tornillos de fijación (accesorios opcionales).
- Comprobar que las mangueras de conexión no presenten daños.
- Comprobar que los cables de conexión no presenten daños.
- Utilizar únicamente mangueras y cables en perfecto estado.
- No poner en marcha el husillo de alta frecuencia cerca de una fuente de calor.

8 Instalación

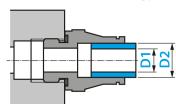
Antes de la instalación:


 Comprobar que el husillo de alta frecuencia está completo y no presenta años.

Si el husillo de alta frecuencia ha estado almacenado durante un período prolongado:

➡ Ejecutar todos los pasos descritos en el capítulo Puesta en funcionamiento tras almacenamiento.

modo flexible.



Instalar el husillo de alta frecuencia

Ejecutar los pasos siguientes en orden para instalar el husillo de alta frecuencia:

- Retirar los tapones de cierre que protegen las conexiones durante el transporte para proteger de daños y suciedad.
- Montar los racores para mangueras adecuados en el lugar de los tapones de cierre.
- Montar las mangueras correspondientes en los racores para mangueras.
- Debe asegurarse que las conexiones sean flexibles y sin cargas.
- ➡ Estanqueizar todas las conexiones para aire comprimido axialmente respecto al sentido de atornillado.
- ⇒ Estanqueizar todas las conexiones para agua refrigerante axialmente respecto al sentido de atornillado.
- Si el husillo de alta frecuencia está dotado de aire de sellado:
 - Asegurarse de que no se pueda generar ninguna corriente de aire en la zona de rodamientos.
 - Utilizar siempre cajas de cables estancas al conectar cables eléctricos.
- ⇒ Fijar el husillo de alta frecuencia en la máquina.
- Conectar las mangueras a la toma del medio correspondiente.
- ⇒ Retirar la caperuza protectora que protege el eje durante el transporte para evitar los daños y la suciedad.
- Conectar los conectores de los cables de conexión de funcionamiento a la conexión correspondiente del husillo de alta frecuencia y al convertidor de frecuencia.
- Bloquear los conectores.

8.2 Diámetro del tubo de alimentación del medio

Consultar el diámetro nominal de los tubos de alimentación de medios en la tabla siguiente:

DN	Medio	D1		D:	2
2,8	Aire comprimido	2,8 mm	⁷ / ₆₄ "	4 mm	⁵ / ₃₂ "
4	Aire comprimido	4 mm	⁵ / ₃₂ "	6 mm	¹⁵ / ₆₄ "
6	Aire comprimido	6 mm	¹⁵ / ₆₄ "	8 mm	⁵ / ₁₆ "
5,5	Agua refrigerante	5,5 mm	⁷ / ₃₂ "	8 mm	⁵ / ₁₆ "
7	Agua refrigerante	7 mm	⁹ / ₃₂ "	10 mm	²⁵ / ₆₄ "

8.3 Agua refrigerante

8.3.1 Calidad del agua refrigerante

El agua destilada provoca inmediatamente corrosión en las piezas bruñidas, que a menudo pasa desapercibida pero posteriormente causa daños graves.

No utilizar agua pura o destilada.

Los depósitos acumulados en los canales de refrigeración a causa de un agua de refrigeración inadecuada evitan la disipación de calor.

Utilizar agua refrigerante con las siguientes características:

Agua potable	Conforme a 98/83/CE
Grado de dureza	1 – 15°dH
Valor pH	7-9
Aditivo (protección anticorrosiva)	20 % Antrifrogen N

8.3.2 Ajustar la refrigeración

Observar los siguientes valores para la refrigeración de líquidos:

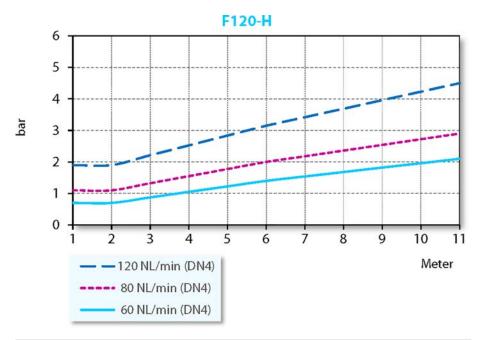
Diámetro de manguera (*)	Como mínimo DN 5,5
Temperatura de entrada	Como mínimo 20 °C
Caudal	Como mínimo 1,5 L/min
Temperatura de salida	Como máximo 40 °C

(*) Utilizar mangueras de refrigeración impenetrables por los rayos ultravioleta.

8.4 Aire comprimido

8.4.1 Clases de pureza de aire (ISO 8573 -1)

Impurezas sólidas	Clase 3 Grado de filtración mejor 5 μm para sólidos
Contenido en agua	Clase 4 Punto máx. de condensación bajo presión +3 °C
Contenido total de aceite	Clase 3 Máx. contenido de aceite 1 mg/m³


8.4.2 A

Para la especificación de la calidad del aire véase el capítulo «Clases de pureza de aire (ISO 8573 -1) [▶ 27]».

Ajustar el aire de sellado

El valor de ajuste para el aire de sellado depende del diámetro y la longitud de la manguera.

- Diámetro de manguera: DN 4
- Consultar el valor de ajuste en el siguiente diagrama.
- Conectar también el aire de sellado y la refrigeración en el control al encender la máquina. De este modo el husillo de alta frecuencia también estará protegido en estado de parada.

Demanda mínima de aire de sellado	Mecanizado en seco
Demanda media de aire de sellado	Mecanizado con agua proyectada
Demanda máxima de aire de sellado	Mecanizado con chorro de agua

8.4.3

Para la especificación de la calidad del aire véase el capítulo «Clases de pureza de aire (ISO 8573 -1) [▶ 27]».

.3 Valor de ajuste

Respetar los valores siguientes:

Limpieza del cono	4,5 - 6 bar
Neumática para cambio de herramienta	≥ 6,0 bar

9

Puesta en funcionamiento

PELIGRO: A causa de piezas proyectadas.

Un número de revoluciones incorrecto puede destruir el husillo de alta frecuencia o la herramienta y proyectar sus fragmentos.

- Respetar el número máximo de revoluciones para la herramienta seleccionada.
- Respetar el número máximo de revoluciones del husillo de alta frecuencia.
- ► El número de revoluciones máximo admisible del husillo de alta frecuencia para la puesta en marcha/rectificado siempre es el número de revoluciones más bajo indicado.

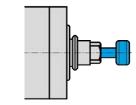


Figura de ejemplo: colocar el vástago

Aviso: Garantizar el funcionamiento.

No hacer funcionar nunca el husillo de alta frecuencia sin un vástago de herramienta fijado.

Si el vástago de herramienta no está fijado:

- ☐ El sistema de fijación se daña a causa de la fuerza centrífuga.
- ☐ El sistema de fijación se desajusta.
- ☐ Se influye en la calidad de equilibrado del husillo de alta frecuencia.
- ☐ Se daña el rodamiento.
- Girar a mano el eje del husillo como mínimo 10 veces.
- ⇒ Antes de almacenarlo y antes de la puesta en funcionamiento limpiar solamente el canal de refrigeración con aire comprimido.

9.1

100% 80% 60% 40% 20%

Duración de la carga (minutos)

Esquema de rodaje

- → Poner en funcionamiento el husillo de alta frecuencia con la herramienta fijada (sin mecanizado) durante unos 10 minutos.
- ⇒ El número de revoluciones es, como mucho, el 20 % del número de revoluciones máximo admisible del husillo de alta frecuencia.
 - Véase la definición: número de revoluciones máximo admisible
- ⇒ Dejar en marcha el husillo de alta frecuencia durante aprox. 2 minutos, como mucho, al 50 % del número de revoluciones máximo admisible.
- ⇒ Hacer funcionar el husillo de alta frecuencia otros 2 minutos más, como mucho, al 80 % del número de revoluciones máximo admisible.

Ahora el husillo de alta frecuencia está listo para el funcionamiento.

9.2 Arranque diario

Proceder de la siguiente manera para precalentar y preservar la grasa lubricante de los rodamientos:

- ⇒ Hacer funcionar el husillo de alta frecuencia con la herramienta tensada (sin mecanizado).
 - Aprox. durante 2 minutos.
 - Con, como máximo, el 50 % del número de revoluciones máximo admisible.

(Véase el capítulo Puesta en funcionamiento [▶ 28])

El husillo de alta frecuencia alcanza así su temperatura de funcionamiento.

9.3 Mensaje de parada

Utilizar en el convertidor de frecuencia la opción de detectar el mensaje de parada del eje y enviarlo al control de la máquina para su evaluación.

9.4 Puesta en funcionamiento tras almacenamiento

- ⇒ Poner el husillo de alta frecuencia en funcionamiento solo cuando su temperatura se haya adaptado (de la temperatura del lugar de almacenamiento a la del lugar de utilización).
 - La diferencia de temperatura entre el husillo de alta frecuencia y el lugar de utilización no debe superar los 10 °C.
- ⇒ Ejecutar todos los pasos descritos en el capítulo «Mantenimiento [> 36]».
- ⇒ Hacer funcionar el husillo de alta frecuencia aprox. 5 minutos, como máximo, al 50 % del número de revoluciones admisible.
 - ♦ Véase el capítulo Puesta en funcionamiento [> 28]
- → Hacer funcionar el husillo de alta frecuencia otros 2 minutos más, como máximo, al 80 % del número de revoluciones admisible.

De este modo se precalienta y preserva la grasa lubricante.

10

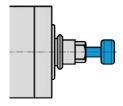


Figura de ejemplo: colocar el vástago

Cambio de herramienta

ATENCIÓN: Peligro de atrapamiento a causa del eje en rotación.

Si el eje aún gira, los dedos pueden quedar atrapados y aplastados.

Cambiar la herramienta solo cuando el eje esté parado.

Aviso: Garantizar el funcionamiento.

No hacer funcionar nunca el husillo de alta frecuencia sin un vástago de herramienta fijado.

Si el vástago de herramienta no está fijado:

- ☐ El sistema de fijación se daña a causa de la fuerza centrífuga.
- ☐ El sistema de fijación se desajusta.
- ☐ Se influye en la calidad de equilibrado del husillo de alta frecuencia.
- ☐ Se daña el rodamiento.

10.1

Figura de ejemplo: caracterización de sentido de giro

Marcha a derecha y a izquierda

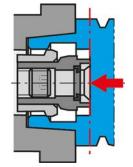
El sistema de sujeción del husillo de alta frecuencia está diseñado para la rotación a derecha e izquierda.

- Utilizar únicamente herramientas con el sentido de giro adecuado para el husillo de alta frecuencia.
- Utilizar únicamente asientos de herramienta con el sentido de giro adecuado para el husillo de alta frecuencia.
- ➡ En el convertidor de frecuencia, ajustar el sentido de giro del husillo de alta frecuencia según el sentido de giro de la herramienta/del asiento de herramienta utilizados.

10.2 Cambio neumático del cono

PELIGRO: A causa de piezas proyectadas.

La limpieza del cono podría acumular presión de aire en el cono de fuste hueco (HSK) durante el cambio del cono para herramienta. Si se libera repentinamente dicha presión, proyectará el cono de fuste hueco.

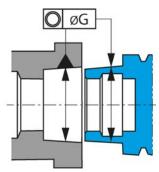

▶ Desconectar obligatoriamente la limpieza del cono cuando el HSK se encuentre aprox. 1 - 2 mm delante de la superficie plana de contacto.

Consejo: Garantizar la calidad de marcha concéntrica.

- Mantener la pinza portapieza, la tuerca de apriete, la superficie plana de contacto, el eje, el cono para herramienta y el asiento de herramienta siempre limpios.
- ► Comprobar el asiento del cono para herramienta.

Al cambiar al husillo de alta frecuencia debe estar limpio y en perfecto estado.

- Asegurarse de que el eje del husillo de alta frecuencia está detenido por completo.
- Conectar el aire comprimido para «cilindro hacia delante».
- Retirar la herramienta.
- ⇒ Limpiar el cono interior del asiento de herramienta y el cono interior del eje con el cono de limpieza de fieltro.
- Colocar la herramienta.
 - Insertar la herramienta hasta la superficie de contacto del cono de sujeción.
- Conectar el aire comprimido para «cilindro hacia atrás».
- Una vez realizado el cambio de herramienta hacer una pausa de 1-2 segundos.
- ⇒ Poner en marcha el husillo de alta frecuencia.


Insertar la herramienta hasta la superficie de contacto del cono de sujeción.

10.2.1

Tensor automático de herramienta HSK

Recomendamos los siguientes valores:

- ⇒ Tolerancia de coaxialidad al cambiar la herramienta.
 - ♥ Coaxialidad (ØG): 0.8 mm
- Fuerza de contacto en el cono de sujeción.
 - Máximo: 220 N

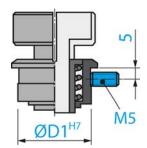
Tolerancia de coaxialidad

10.3

Figura de ejemplo: carrera de expulsión

Estación de cambio de herramienta (accesorios opcionales)

Al cambiar la herramienta el husillo de alta frecuencia se desplaza a la estación de cambio con la herramienta tensada.


 Respetar los valores siguientes al fabricar la estación de cambio, para compensar la carrera de expulsión (X):

Con alojamiento elástico	X = 2 - 5 mm
Fuerza elástica	40 - 80 N

10.3.1 Cambio neumático del cono

El cilindro empuja el asiento de herramienta fuera del eje en cada cambio de herramienta.

10.3.2 Instalar la estación de cambio

Proceder de la siguiente manera para instalar la estación de cambio:

- ⇒ Taladrar un diámetro adecuado (
 ☒ D1 H7) para el asiento de herramienta.
- Colocar una rosca M5.
- Insertar la estación de cambio en el taladro.
- ⇒ Fijar la estación de cambio con el pasador roscado (M5).

10.3.3 Mantenimiento

Antes de empezar a trabajar:

- Comprobar que todas las superficies estén bien limpias y libres de polvo, grasa, refrigerante, restos de mecanizado y partículas de metal.
- Comprobar que la estación de cambio no presente daños.

10.4 Diagrama de flujo

10.4.1 Diagrama de flujo neumático

Mensaje de parada del husillo de alta frecuencia procedente del control de la máquina. (N.º de revoluciones = 0 en husillo de alta frecuencia con magnetorresistor) (frecuencia = 0 y retardo de como mín. 2-3 s en husillo de alta frecuencia sin magnetorresistor)

		Conexión	Ai comp	ire rimido
		Núm.	ON	OF
Atención	Dejar el aire de sellado siempre conectado.			
lo cambiar herramienta uando el eje gira.	Incluso durante el cambio de herramienta. Así se evita que entre suciedad o humedad en el husillo de alta frecuencia.	3	\checkmark	
ambio de herramienta en I husillo de alta frecuencia.				
Triasillo de dita freedericia.	Limpieza del cono.	4	\checkmark	
	Neumática para cambio de herramienta ON.		<u> </u>	
t ención o girar sin herramienta nsada.	Cilindro hacia delante	7	\checkmark	
	Ejecutar cambio de herramienta.			
ñal rramienta tensada	Limpieza del cono OFF.			
erramienta tensada	Desconectar cuando la superficie plana de contacto del cono para herramienta esté a 2 mm de la superficie plana de contacto del eje.	4		√
	Neumática para cambio de herramienta ON.			
	Cilindro hacia atrás	8	\checkmark	
	El husillo de alta frecuencia está listo para el funcionamiento.			

10.4.2 Diagrama de flujo eléctrico

Cono para herra- mienta	Aire comprimido ON	Tensado	Distendido	Expulsado
No	Sí	Sin señal	Señal	Sin señal
colocado		= 0	= 1	= 0
Colocado	Sí	Señal = 1	Sin señal = 0	Sin señal = 0
No	Sí	Sin señal	Sin señal	Señal
tensado		= 0	= 0	= 1

10.4.3 Señales

Entradas	Descripción	Señal	Acción
Señal destensado	Cilindro hacia atrás. Sistema de fijación distendido. Ningún cono para herramienta colo- cado en el asiento de herramienta del husillo de alta frecuencia.	= 0	No poner en marcha el husillo de alta fre- cuencia
Señal tensado	Cilindro hacia atrás. Sistema de fijación tensado con herramienta. Cono para herramienta colocado en el asiento de herramienta del husillo de alta frecuencia.	= 1	Poner en marcha el husillo de alta fre- cuencia si la señal es = 1
Señal expulsado	El cilindro está extendido. Sistema de fijación suelto. Cono para herramienta colocado en el asiento de herramienta del husillo de alta frecuencia. El cono para herramienta no está ten- sado.	= 0	No poner en marcha el husillo de alta fre- cuencia

Aviso: garantizar el funcionamiento.

La señal «destensado» muestra al operario el estado de disponibilidad del husillo de alta frecuencia para garantizar la seguridad durante el funcionamiento.

El estado de fijación «destensado»:

- lacktriangledown no es un estado de funcionamiento autorizado
- ☐ solo está autorizado para el transporte y el almacenamiento

Cualquier carrera en vacío reduce la vida útil del husillo de alta frecuencia.

11 Herramientas para el mecanizado de alta velocidad

PELIGRO: A causa de piezas proyectadas.

En caso de sentido de giro incorrecto la herramienta se dañará al aplicar la carga. La fuerza centrífuga proyectará los fragmentos rotos.

▶ Utilizar únicamente herramientas con el sentido de giro adecuado para el husillo de alta frecuencia.

PELIGRO: A causa de piezas proyectadas.

Un número de revoluciones incorrecto puede destruir el husillo de alta frecuencia o la herramienta y proyectar sus fragmentos.

- Respetar el número máximo de revoluciones para la herramienta seleccionada.
- Respetar el número máximo de revoluciones del husillo de alta frecuencia.
- ► El número de revoluciones máximo admisible del husillo de alta frecuencia para la puesta en marcha/rectificado siempre es el número de revoluciones más bajo indicado.
- Utilizar solo herramientas técnicamente perfectas.
- ⇒ Utilizar únicamente herramientas en las que el diámetro del vástago de herramienta se corresponda con el diámetro interior de la pinza portapieza. Por ejemplo, no utilizar vástagos con un diámetro de 3 mm en pinzas portapiezas para 1/8" (=3,175 mm).
 - ♦ Véase también el capítulo Datos técnicos [> 14]
- Utilizar únicamente vástagos de herramienta con una tolerancia de diámetro de h6.
- No utilizar vástagos de herramienta con superficie de sujeción (p. ej. Weldon).
- Utilizar únicamente herramientas equilibradas.
 - DIN ISO 1940, nivel de calidad 2,5.

12 Mantenimiento

El mantenimiento del husillo debe ser realizado únicamente por personal especializado.

Antes de cada trabajo de mantenimiento es necesario detener el husillo de alta frecuencia.

- Asegurarse de que el eje del husillo de alta frecuencia está detenido por completo.
- Antes de ejecutar un trabajo, leer detenidamente el capítulo correspondiente a dicho trabajo en el manual de instrucciones.
- Observar el manual de instrucciones de la máquina en la que se ha montado el husillo de alta frecuencia.
- Observar todas las indicaciones y normas de seguridad.

12.1 Rodamientos de bolas

Aviso: Los cuerpos extraños reducen la vida útil.

Los rodamientos del husillo de alta frecuencia están dotados de una lubricación con grasa de por vida. Por lo tanto no requieren mantenimiento.

- No lubricar los rodamientos de bolas.
- No introducir grasas, aceites ni productos de limpieza en orificios del husillo de alta frecuencia.

12.2 Limpieza diaria

Para garantizar un funcionamiento seguro y preciso del husillo de alta frecuencia, todas las superficies de contacto del husillo, del asiento del husillo, del asiento de herramienta y del soporte de herramienta deben estar limpias.

Aviso: Los cuerpos extraños reducen la vida útil.

- No utilizar aire comprimido para limpiar el husillo de alta frecuencia.
- No utilizar aire comprimido para limpiar el husillo de alta frecuencia.
- No utilizar aire comprimido para limpiar el husillo de alta frecuencia.

Las impurezas podrían penetrar en la zona de rodamientos.

12.2.1 Antes de empezar a trabajar

- Comprobar que todas las superficies estén bien limpias y libres de polvo, grasa, refrigerante, restos de mecanizado y partículas de metal.
- Comprobar que el husillo de alta frecuencia no presente daños.
- ⇒ Si el husillo de alta frecuencia está dotada de aire de sellado, conectarlo siempre durante la limpieza.
- Utilizar un paño limpio y suave o un pincel limpio y suave para la limpieza.

Si el husillo de alta frecuencia está dotado de limpieza del cono:

Después de limpiar, conectar la limpieza del cono durante 2-3 segundos.

Si quedaba alguna impureza adherida, el aire de la limpieza del cono la soplará fuera del eje.

12.2.2 En cada cambio de herramienta

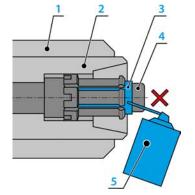
- Asegúrese de que el asiento de herramienta y el vástago de la herramienta estén limpios.
 - 🔖 Elimine la suciedad que pueda haberse adherido a ellos.

12.2.3 En cada cambio del dispositivo de sujeción

- ⇒ Limpiar el cono interior del eje del husillo de alta frecuencia. El cono interior debe estar libre de virutas e impurezas.
- Limpiar el cono para herramienta.

12.3 Almacenamiento

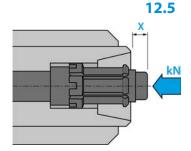
Si el husillo de alta frecuencia no se necesita durante un período prolongado:


- Antes de almacenarlo y antes de la puesta en funcionamiento limpiar solamente el canal de refrigeración con aire comprimido.
- Retirar todos los residuos de refrigerante.
- Almacenar el husillo de alta frecuencia en posición horizontal.
- Almacenar el husillo de alta frecuencia protegido de la humedad, el polvo y otros agentes medioambientales.
- Respetar las siguientes condiciones de almacenamiento.

Temperatura del lugar de almacenamiento	+10 °C + 45° C
Humedad relativa del aire	< 50 %

12.4 Mantenimiento semanal

Comprobación visual del sistema de fijación:


- Daños
- Función
- Lubricación
 - Para conseguir una fuerza de fijación constante, la superficie funcional del sistema de fijación debe volver a engrasarse.
 - Recomendamos el lubricante en aerosol para metal METAFLUX 70-81.
 - No está permitido mezclar diferentes grasas.

- 1 Husillo AF
- 2 Eje
- 3 Superficie funcional
- 4 el sistema de fijación
- 5 Lubricante en aerosol (accesorio opcional)

Mantenimiento mensual

- Girar a mano el eje del husillo de alta frecuencia cada cuatro semanas como mínimo 10 veces.
- Compruebe la dimensión X del sistema de fijación
 - ♦ Dimensión nominal: 10,3 ± 0,1 mm
- Compruebe la fuerza de fijación del sistema de fijación
 - Valor teórico: 8,8 14,3 kN

En caso de que los valores no sean correctos, envíe el husillo SF a **Nakanishi Jaeger GmbH** o a un servicio técnico certificado para su inspección y mantenimiento.

12.6 Almacenamiento prolongado

- Girar a mano el eje del husillo de alta frecuencia cada tres meses como mínimo 10 veces.
- ⇒ A continuación, poner en funcionamiento el husillo de alta frecuencia con la herramienta fijada durante unos 10 minutos.
 - ☼ El número de revoluciones es, como mucho, el 20 % del número de revoluciones máximo admisible del husillo de alta frecuencia. (Véase el capítulo Puesta en funcionamiento [≥ 28])

12.7 Tiempo máximo de almacenamiento

El tiempo máximo de almacenamiento es de 2 años.

Observar obligatoriamente todos los puntos del capítulo «Almacenamiento prolongado [▶ 38]». Solo así se puede preservar la capacidad de funcionamiento del husillo de alta frecuencia.

13 Desmontaje

Proceder de la siguiente manera para desmontar el husillo de alta frecuencia:

- Desconectar la alimentación de energía (corriente) por completo.
- Desconectar la alimentación de medios (aire y líquido) por completo.
- Asegurarse de que el eje del husillo de alta frecuencia está detenido por completo.
- Retirar todas las conexiones del husillo de alta frecuencia.
- ⇒ Vaciar el canal de refrigeración del husillo de alta frecuencia.
- Desmontar el husillo de alta frecuencia de la máquina.

13.1 Eliminación de desechos y protección del medio ambiente

Más del 90 % de los materiales utilizados en el husillo de alta frecuencia son reciclables (aluminio, acero inoxidable, acero, cobre, etc.)

El husillo de alta frecuencia no debe desecharse con la basura doméstica.

- ⇒ Retirar todos los materiales no reciclables.
- Desguazar el husillo de alta frecuencia en una instalación de tratamiento autorizada.
- Observar todas las normas de las autoridades administrativas competentes.
- No conducir líquidos refrigerantes a las aguas residuales.
- Desechar los refrigerantes conforme a las normativas locales.

Si no es posible desmontar el husillo de alta frecuencia, enviarlo a **Nakanishi Jaeger GmbH**. La empresa **Nakanishi Jaeger GmbH** no asumirá los costes derivados del envío ni las tasas de las instalaciones de tratamiento.

14 Servicio posventa y reparaciones

PELIGRO: Descargas eléctricas.

Las descargas eléctricas pueden causar quemaduras graves y lesiones mortales.

Excluir riesgos causados por la energía eléctrica (véanse los detalles, p. ej., en las normas de la VDE (asociación de electrotécnicos alemanes) y de las empresas locales de suministro de energía).

Antes de empezar a trabajar desconectar la alimentación de corriente del husillo de alta frecuencia.

Aviso: Daños a causa de descargas electrostáticas.

No tocar los componentes del husillo de alta frecuencia sensibles a descargas electrostáticas.

14.1 Red de servicio posventa

Solo los socios de servicio posventa certificados pueden abrir y reparar el husillo. En caso de inobservancia se anulará el derecho a indemnización y garantía.

 Consultar la lista de los socios de servicio posventa en la siguiente página web.

https://www.nakanishi-jaeger.com/es/contact/service-partners

14.2 Fallos de funcionamiento

En base a la siguiente enumeración se pueden determinar y eliminar fallos rápidamente.

El husillo de alta frecuencia no gira

Causa	Eliminación de fallos
	☐ Comprobar el convertidor de frecuencia (CF).
No hay	☐ Comprobar la máquina.
alimentación de co-	☐ Comprobar todas las conexiones eléctricas.
rriente	☐ Comprobar todos los conductores del cable de motor.
	☐ Accionar el botón Arranque/Reinicio.
	☐ Esperar a que el husillo de alta frecuencia se haya enfriado.
La protección térmica se ha conectado	☐ Comprobar si hay mensajes de error del CF. Si no hay mensaje encendido, poner en marcha el CF.
	(Véase también «SelEl husillo se calienta [> 40] »)
El CF se ha desconectado	☐ Consultar los mensajes de error en el manual de instrucciones del CF.
Cambio de herramienta activado	☐ Desconectar la neumática para el cambio de herramienta.

El husillo de alta frecuencia está demasiado caliente

Causa	Eliminación de fallos
	☐ Comprobar la potencia del refrigerador.
26.	☐ Comprobar el nivel de agua del refrigerador.
Refrigeración insufi- ciente	☐ Comprobar las tomas y los tubos refrigerantes.
cicinc	☐ Comprobar el circuito refrigerante.
	☐ Comprobar si hay mensajes de error del refrigerador.
Falta fase	Comprobar si hay rotura de cable en los conductores del cable de motor.
	☐ Comprobar el sentido de giro del husillo de alta frecuencia.
Mecanizado demasiado	☐ Comprobar el sentido de giro de la herramienta.
intenso	 Comprobar si la herramienta presenta daños.
	☐ Reducir la intensidad de carga del mecanizado.
CF ajustado incorrecta- mente	Comparar los valores del husillo de alta frecuencia con los valores del CF.

Servicio posventa y reparaciones

El husillo de alta frecuencia hace ruido

Causa	Eliminación de fallos
	☐ Utilizar únicamente herramientas equilibradas.
Herramienta inadecua-	(Véase también el capítulo «Herramientas para el mecanizado de alta velocidad [▶ 35]»).
da	Comprobar si la herramienta presenta daños.
	☐ Reemplazar la herramienta dañada.
Husillo de alta frecuencia sin sujeción circular o deformado	☐ Utilizar únicamente soportes de husillo del surtido de accesorios originales o soportes de husillo fabricados según las especificaciones de tolerancia de la empresa Nakanishi Jaeger GmbH.
Husillo de alta frecuen-	Apretar los tornillos de ajuste del soporte de husillo prime- ro solo a mano.
cia demasiado apreta- do	 No utilizar medios técnicos auxiliares para apretar el husillo de alta frecuencia.
Rodamiento dañado	 Contactar con el servicio posventa de la empresa Naka- nishi Jaeger GmbH.

No hay cambio automático de herramienta

Causa	Eliminación de fallos
Impurezas	 Retirar todas las impurezas que haya entre el cono para he- rramienta y el eje del husillo de alta frecuencia.
	(Observar todos los puntos de los capítulos «Cambio de herramienta [▶ 30]» y «Mantenimiento [▶ 36]».)
	☐ Comprobar las conexiones de aire comprimido.
	☐ Comprobar las mangueras de aire comprimido.
Falta presión	☐ Comprobar el circuito neumático.
Talta presion	 Comprobar los ajustes del aire comprimido para el cambio de herramienta.
	(Véase también el capítulo «Valor de ajuste [> 28] »).
Falta purga de aire	 Comprobar si las dos conexiones del cilindro de doble efecto están conectadas.
	☐ Comprobar si el cilindro aspira aire.

El sensor no suministra señales

Causa	Eliminación de fallos
No hay conexión con el sensor	☐ Comprobar los cables y las conexiones.
Posición incorrecta de la herramienta	☐ Comprobar si la herramienta está tensada correctamente.
Posición incorrecta de inserción de herra-mienta	 Contactar con el servicio posventa de la empresa Naka- nishi Jaeger GmbH.

Servicio posventa y reparaciones

El husillo de alta frecuencia vibra/oscila

Causa	Eliminación de fallos
	☐ Utilizar únicamente herramientas equilibradas.
Herramienta inade-	(Véase también el capítulo «Herramientas para el mecanizado de alta velocidad [▶ 35]»).
cuada	☐ Comprobar si la herramienta es adecuada para la aplicación.
	Comprobar si la herramienta presenta daños.
	☐ Reemplazar la herramienta dañada.
lana	☐ Retirar todas las impurezas que haya entre el cono para herramienta y el eje del husillo de alta frecuencia.
Impurezas	(Observar todos los puntos de los capítulos «Cambio de herramienta [▶ 30]» y «Mantenimiento [▶ 36]».)
CF ajustado incorrectamente	 Comparar los valores del husillo de alta frecuencia con los valores del CF.
Mecanizado demasia- do intenso	☐ Reducir la intensidad de carga del mecanizado.
Tornillos de fijación aflojados	☐ Apretar los tornillos.
Husillo de alta fre- cuencia dañado	 Contactar con el servicio posventa de la empresa Nakanishi Jaeger GmbH.

Si tras comprobar todos los puntos no se elimina el fallo, contactar con el socio de servicio posventa correspondiente.

- ⇒ Pedir el comprobante de reparación al socio de servicio posventa.
- ⇒ Comprobar el manual de instrucciones de la máquina.
- Contactar con el fabricante de la máquina.

15 Declaración de incorporación

De acuerdo con la Directiva de Máquinas CE

Nakanishi Jaeger GmbH

Construcción de maquinaria eléctrica de alta frecuencia

Siemensstr. 8

Deben observarse las indica-

ciones de seguridad de la do-

cumentación del producto su-

ministrada.

D-61239 Ober-Mörlen

Tel. +49 (0) 60029123 -0

declara por la presente que el siguiente producto,

Producto	Husillo de alta frecuencia
Tipo	F120-H830.10 S11W2V
N.º de serie	Véase la última página del manual de instrucciones

en la medida en la que sea posible en función del volumen de suministro cumple los requisitos básicos establecidos por la Directiva de máquinas 2006/42/CE.

Párrafos de la Directiva de máquinas que se han aplicado: 1.1.1; 1.1.2; 1.1.5; 1.3.2; 1.3.4; 1.5.1; 1.5.2; 1.5.4; 1.5.5; 1.5.6; 1.5.8; 1.5.9; 1.6.4; 1.6.5; 1.7.1; 1.7.1.1; 1.7.2; 1.7.3; 1.7.4;

La cuasi máquina cumple además en su versión de serie todas las disposiciones de las siguientes directivas:

Normas armonizadas anlicadas	DIN EN ISO 12100
Normas armonizadas aplicadas	Seguridad de las máquinas

La puesta en servicio de la cuasi máquina estará prohibida hasta que se haya demostrado que la máquina en la que se debe montar la cuasi máquina cumple las disposiciones de la Directiva de máquinas 2006/42/CE y, dado el caso, otras normativas aplicables.

Nosotros, Nakanishi Jaeger GmbH, nos comprometemos a remitir la documentación especial de la cuasi máquina a las autoridades nacionales si así lo solicitan.

La documentación técnica especial para esta cuasi máquina ha sido elaborada de conformidad con el Anexo VII, Parte B.

Representante autorizado para la recopilación de la documentación conforme al Anexo VII, Parte B:

Nakanishi Jaeger GmbH

Ober-Mörlen, 25.06.2024

Canal de YouTube de Nakanishi Jaeger

Escanear este código QR con cualquier otro escáner de códigos QR.

Nakanishi Jaeger GmbH

Siemensstraße 8 61239 Ober-Mörlen **GERMANY**

***** +49 (0)6002-9123-0

oxtimes sales@nakanishi-jaeger.com

www.nakanishi-jaeger.com

N.º de serie

Tipo F120-H830.10 S11W2V

N.ºde artículo 10408020-01

Revisión 04 Fecha 25.06.2024

Sprache ES

